书籍封面
本书系统讲解了Spark机器学习的技术、原理、组件、算法,以及构建Spark机器学习系统的方法、流程、标准和规范。此外,还介绍了Spark的深度学习框架TensorFlowOnSpark,以及如何借助它实现卷积神经网络和循环神经网络。 全书共14章,分为四个部分: 第一部分(1~7章) 主要讲解了Spark机器学习的技术、原理和核心组件,包括Spark ML、Spark ML Pipeline、Spark MLlib,以及如何构建一个Spark机器学习系统。 第二部分(8~12章) 主要以实例为主,讲解了Spark ML的各种机器学习算法,包括推荐模型、分类模型、聚类模型、回归模型,以及PySpark决策树模型和Spark R朴素贝叶斯模型。 第三部(第13章) 与之前的批量处理不同,本章以在线数据或流式数据为主,讲解了Spark的流式计算框架Spark Streaming。 第四部分(第14章) 介绍了Spark深度学习,主要包括TensorFlow的基础知识及它与Spark的整合框架TensorFlowOnSpark。
微信读书推荐值
待评分
推荐
一般
不行
热门划线