仅支持付费会员使用
微信扫码开通付费会员

本书由浅入深、系统性地介绍了深度学习模型压缩与优化的核心技术。本书共9 章,主要内容有:深度学习模型性能评估、模型可视化、轻量级模型设计、模型剪枝、模型量化、迁移学习与知识蒸馏、自动化模型设计、模型优化与部署工具。本书理论知识体系完备,同时提供了大量实例,供读者实战演练。
本书由浅入深、系统性地介绍了深度学习模型压缩与优化的核心技术。本书共9 章,主要内容有:深度学习模型性能评估、模型可视化、轻量级模型设计、模型剪枝、模型量化、迁移学习与知识蒸馏、自动化模型设计、模型优化与部署工具。本书理论知识体系完备,同时提供了大量实例,供读者实战演练。
本书由浅入深、系统性地介绍了深度学习模型压缩与优化的核心技术。本书共9 章,主要内容有:深度学习模型性能评估、模型可视化、轻量级模型设计、模型剪枝、模型量化、迁移学习与知识蒸馏、自动化模型设计、模型优化与部署工具。本书理论知识体系完备,同时提供了大量实例,供读者实战演练。

