相关作者的搜索结果
深入浅出Embedding:原理解析与应用实践
6人今日阅读 推荐值 56.6%
这是一本系统、全面、理论与实践相结合的Embedding技术指南,由资深的AI技术专家和高级数据科学家撰写,得到了黄铁军、韦青、张峥、周明等中国人工智能领域的领军人物的一致好评和推荐。在内容方面,本书理论与实操兼顾,一方面系统讲解了Embedding的基础、技术、原理、方法和性能优化,一方面详细列举和分析了Embedding在机器学习性能提升、中英文翻译、推荐系统等6个重要场景的应用实践;在写作方式上,秉承复杂问题简单化的原则,尽量避免复杂的数学公式,尽量采用可视化的表达方式,旨在降低本书的学习门槛,让读者能看得完、学得会。全书一共16章,分为两个部分:第1部分(第1~9章)Embedding理论知识。主要讲解Embedding的基础知识、原理以及如何让Embedding落地的相关技术,如TensorFlow和PyTorch中的Embedding层、CNN算法、RNN算法、迁移学习方法等,重点介绍了Transformer和基于它的GPT、BERT预训练模型及BERT的多种改进版本等。第二部分(第10 ~16章)Embedding应用实例。通过6个实例介绍了Embedding及相关技术的实际应用,包括如何使用Embedding提升传统机器学习性,如何把Embedding技术应用到推荐系统中,如何使用Embedding技术提升NLP模型的性能等。
Python深度学习:基于TensorFlow
5人今日阅读 推荐值 75.2%
在机器学习、深度学习中有很多抽象的概念、复杂的算法、深奥的理论,如Numpy的广播机制、神经网络中的共享参数、动量优化法、梯度消失或爆炸等,这些内容如果只用文字来描述,可能很难达到茅塞顿开的效果,但如果用一些图形来展现,再加上适当的文字说明,往往能取得非常好的效果,正所谓一张好图胜过千言万语。
Python深度学习:基于TensorFlow 第2版
1人今日阅读
1.内容选择?:提供全栈式的解决方案 深度学习涉及范围比较广,既有对基础、原理的要求,也有对代码实现的要求。如何在较短时间内快速提高深度学习的水平?如何尽快把所学运用到实践中?这方面虽然没有捷径可言,但却有方法可循。本书基于这些考量,希望能给你提供一站式解决方案。具体内容包括?:机器学习与深度学习的三大基石(线性代数、概率与信息论及数值分析)?;机器学习与深度学习的基本理论和原理?;机器学习与深度学习的常用开发工具(Python、TensorFlow、Keras等)?;TensorFlow的高级封装及多个综合性实战项目等。 2.层次安排?:找准易撕口,快速实现由点到面的突破 我们打开塑料袋时,一般从易撕口开始,这样即使再牢固的袋子也很容易打开。面对深度学习这个“牢固袋子”,我们也可以采用类似方法,找准易撕口。如果没有,就创造一个易撕口,并通过这个易撕口,实现点到面的快速扩展。本书在面对很多抽象、深奥的算法时均采用了这种方法。我们知道BP算法、循环神经网络是深度学习中的两块“硬骨头”,所以我们在介绍BP算法时,先介绍单个神经如何实现BP算法这个易撕口,再延伸到一般情况?;在介绍循环神经网络时,我们也先以一个简单实例为易撕口,再延伸到一般情况。希望这种方式能帮助你把难题化易,把大事化小,把不可能转换为可能。 3.表达形式?:让图说话,一张好图胜过千言万语 机器学习、深度学习中有很多抽象的概念、复杂的算法、深奥的理论,如NumPy的广播机制、梯度下降对学习率敏感、神经网络中的共享参数、动量优化法、梯度消失或爆炸等,这些内容如果只用文字来描述,可能很难达到让人茅塞顿开的效果,但如果用一些图来展现,再加上适当的文字说明,往往能取得非常好的效果,正所谓一张好图胜过千言万语。 除了以上谈到的三个方面,为了帮助大家更好地理解,更快地掌握机器学习、深度学习这些人工智能的核心内容,本书还包含了其他方法,相信阅读本书的读者都能体会到。我们希望通过这些方法或方式带给你不一样的理解和体验,使你感到抽象数学不抽象、深度学习不深奥、复杂算法不复杂、难学的深度学习也易学,这也是我们写这本书的主要目的。 至于人工智能(AI)的重要性,想必就不用多说了。如果说2016年前属于摆事实论证阶段,那么2016年后已进入事实胜于雄辩阶段了,而2018年后应该撸起袖子加油干了。目前各行各业都忙于AI+,给人“忽如一夜春风来,千树万树梨花开”的感觉!
AIGC原理与实践:零基础学大语言模型、扩散模型和多模态模型
1人今日阅读
内容简介 本书旨在帮助没有任何人工智能技术基础的工程师们全面掌握AIGC的底层技术原理,以及大语言模型、扩散模型和多模态模型的原理与实践。本书的核心价值是,首先为想学习各种大模型的读者打下坚实的技术基础,然后再根据自己的研究方向展开深入的学习,达到事半功倍的效果。 通过阅读本书,您将学习如下内容: (1)AIGC技术基础 深入了解神经网络的基础知识,包括卷积神经网络和循环神经网络的原理与应用。并通过学习神经网络的优化方法,您将掌握如何优化和提升神经网络的性能。 (2)图像生成模型 包括从自动编码器(AE)、变分自编码器(VAE)、生成对抗网络(GAN)等图像生成模型。通过学习优化方法,如WGAN、WGAN-WP、StyleGAN等,您将掌握如何提高图像生成模型的质量和稳定性。同时,了解图像生成模型的应用,如迁移学习、风格迁移等,让您轻松实现个性化创作。此外,还将带您深入了解DDPM、DDIM等扩散模型的前沿技术,为您展现图像生成技术的最新成果,探索更加出色的生成效果和表达方式。 (3)语言生成模型 了解注意力机制、Transformer架构等基础知识,深入探索GAT系列、大语言模型(如ChatGPT),让您掌握自然语言处理的精髓。 (4)多模态模型 了解CLIP、Stable Diffusion、DALL.E等多模态模型,触碰视觉和文字的奇妙交织,领略多模态智能的广阔前景。
Python深度学习:基于PyTorch
深度学习是一块难啃的硬骨头,对有一定开发经验和数学基础的从业者是这样,对初学者更是如此。其中卷积神经网络、循环神经网络、对抗式神经网络是深度学习的基石,同时也是深度学习的3大硬骨头。为了让读者更好地理解掌握这些网络,我们采用循序渐进的方式,先从简单特例开始,然后逐步介绍更一般性的内容,最后通过一些PyTorch代码实例实现之,整本书的结构及各章节内容安排都遵循这个原则。此外,一些优化方法也采用这种方法,如对数据集Cifar10分类优化,先用一般卷积神经网络,然后使用集成方法、现代经典网络,最后采用数据增加和迁移方法,使得模型精度不断提升,由最初的68%,上升到74%和90%,最后达到95%左右。
深度实践Spark机器学习
本书系统讲解了Spark机器学习的技术、原理、组件、算法,以及构建Spark机器学习系统的方法、流程、标准和规范。此外,还介绍了Spark的深度学习框架TensorFlowOnSpark,以及如何借助它实现卷积神经网络和循环神经网络。 全书共14章,分为四个部分: 第一部分(1~7章) 主要讲解了Spark机器学习的技术、原理和核心组件,包括Spark ML、Spark ML Pipeline、Spark MLlib,以及如何构建一个Spark机器学习系统。 第二部分(8~12章) 主要以实例为主,讲解了Spark ML的各种机器学习算法,包括推荐模型、分类模型、聚类模型、回归模型,以及PySpark决策树模型和Spark R朴素贝叶斯模型。 第三部(第13章) 与之前的批量处理不同,本章以在线数据或流式数据为主,讲解了Spark的流式计算框架Spark Streaming。 第四部分(第14章) 介绍了Spark深度学习,主要包括TensorFlow的基础知识及它与Spark的整合框架TensorFlowOnSpark。
Python深度学习TensorFlow与PyTorch 套装共2册
《Python深度学习:基于PyTorch》 这是一本基于新的Python和PyTorch版本的深度学习著作,旨在帮助读者低门槛进入深度学习领域,轻松速掌握深度学习的理论知识和实践方法,快速实现从入门到进阶的转变。 本书是多位人工智能技术专家和大数据技术专家多年工作经验的结晶,从工具使用、技术原理、算法设计、案例实现等多个维度对深度学习进行了系统的讲解。内容选择上,广泛涉猎、重点突出、注重实战;内容安排上,实例切入、由浅入深、循序渐进;表达形式上,深度抽象、化繁为简、用图说话。 本书共16章,分为三部分: *部分(第1~4章) PyTorch基础 首先讲解了机器学习和数据科学中必然会用到的工具Numpy的使用,然后从多个角度讲解了Pytorch的必备基础知识,*后详细讲解了Pytorch的神经网络工具箱和数据处理工具箱。 第二部分(第5~8章) 深度学习基础 这部分从技术原理、算法设计、实践技巧等维度讲解了机器学习和深度学习的经典理理论、算法以及提升深度学习模型性能的多种技巧,涵盖视觉处理、NLP和生成式深度学习等主题。 第三部分(第9~16章) 深度学习实践 这部分从工程实践的角度讲解了深度学习的工程方法和在一些热门领域的实践方案,具体包括人脸识别、图像修复、图像增强、风格迁移、中英文互译、生成式对抗网络、对抗攻击、强化学习、深度强化学习等内容。 《Python深度学习:基于TensorFlow》 本书共22章,分为三个部分。*部分(第1~5章)为Python及应用数学基础部分,介绍Python和TensorFlow的基石Numpy,深度学习框架的鼻祖Theano,以及机器学习、深度学习算法应用数学基础等内容。第二部分(第6~20章)为深度学习理论与应用部分,介绍机器学习的经典理论和算法,深度学习理论及方法,TensorFlow基于CPU、GPU版本的安装及使用、TensorFlow基础、TensorFlow的一些新API,深度学习中神经网络方面的模型及TensorFlow实战案例,TensorFlow的高级封装,TensorFlow综合实战案例等内容。第三部分(第21~22章)为扩展部分,介绍强化学习、生成式对抗网络等内容。
深度学习入门理论实操一步到位 套装共2册
《神经网络与深度学习》 本书是深度学习领域的入门教材,系统地整理了深度学习的知识体系,并由浅入深地阐述了深度学习的原理、模型以及方法,使得读者能全面地掌握深度学习的相关知识,并提高以深度学习技术来解决实际问题的能力。 全书共15章,分为三个部分。 ·第一部分为机器学习基础:第1章是绪论,介绍人工智能、机器学习、深度学习的概要,使读者全面了解相关知识;第2~3章介绍机器学习的基础知识。 ·第二部分是基础模型:第4~6章分别讲述三种主要的神经网络模型:前馈神经网络、卷积神经网络和循环神经网络;第7章介绍神经网络的优化与正则化方法;第8章介绍神经网络中的注意力机制和外部记忆;第9章简要介绍一些无监督学习方法;第10章介绍一些模型独立的机器学习方法,包括集成学习、自训练、协同训练、多任务学习、迁移学习、终身学习、元学习等。 ·第三部分是进阶模型:第11章介绍概率图模型的基本概念,为后面的章节进行铺垫;第12章介绍两种早期的深度学习模型:玻尔兹曼机和深度信念网络;第13章介绍深度生成模型,包括变分自编码器和生成对抗网络;第14章介绍深度强化学习;第15章介绍应用十分广泛的序列生成模型。 本书可作为高等院校人工智能、计算机、自动化、电子和通信等相关专业的研究生或本科生教材,也可供相关领域的研究人员和工程技术人员参考。 本书还配备了教学PPT、编程练习以及课后习题的讨论, 获取方式: 1.微信关注“华章计算机”(微信号:hzbook_jsj) 2.在后台回复关键词:蒲公英书 《Python深度学习:基于PyTorch》 这是一本基于新版Python和PyTorch版本的深度学习著作,旨在帮助读者低门槛进入深度学习领域,轻松掌握深度学习的理论知识和实践方法,快速实现从入门到进阶的转变。 本书是多位人工智能技术专家和大数据技术专家多年工作经验的结晶,从工具使用、技术原理、算法设计、案例实现等多个维度对深度学习进行了系统的讲解。内容选择上,广泛涉猎、重点突出、注重实战;内容安排上,实例切入、由浅入深、循序渐进;表达形式上,深度抽象、化繁为简、用图说话。 本书共16章,分为三部分: 第一部分(第1~4章) PyTorch基础 首先讲解了机器学习和数据科学中必然会用到的工具Numpy的使用,然后从多个角度讲解了Pytorch的必备基础知识,最后详细讲解了Pytorch的神经网络工具箱和数据处理工具箱。 第二部分(第5~8章) 深度学习基础 这部分从技术原理、算法设计、实践技巧等维度讲解了机器学习和深度学习的经典理理论、算法以及提升深度学习模型性能的多种技巧,涵盖视觉处理、NLP和生成式深度学习等主题。 第三部分(第9~16章) 深度学习实践 这部分从工程实践的角度讲解了深度学习的工程方法和在一些热门领域的实践方案,具体包括人脸识别、图像修复、图像增强、风格迁移、中英文互译、生成式对抗网络、对抗攻击、强化学习、深度强化学习等内容。
Python入门到人工智能实战
《Python 入门到人工智能实战》是针对零基础编程学习者编写的教程。从初学者角度出发,每章以问题为导向,辅以大量的实例,详细地介绍了Python 基础、机器学习,以及最好也最易学习的两个平台PyTorch 和Keras。 全书共20 章,包括Python 安装配置、Python 语言基础、流程控制语句、序列、函数、对象、文件及异常处理、数据处理和分析的重要模块(NumPy、Pandas)、机器学习基础、机器学习常用调优方法、神经网络、卷积神经网络,以及使用PyTorch、Keras 实现多个人工智能实战案例等。书中所有知识都结合具体实例进行讲解,涉及的程序代码给出了详细的注释,使读者可以轻松领会。