相关作者的搜索结果
Python数据分析与数据化运营
5人今日阅读 推荐值 78.4%
这是一部从实战角度讲解如何利用Python进行数据分析、挖掘和数据化运营的著作,不仅对数据分析的关键技术和技巧进行了总结,更重要的是对会员、商品、流量、内容4个主题的数据化运营进行了系统讲解。
AIGC辅助数据分析与挖掘:基于ChatGPT的方法与实践
4人今日阅读
内容简介 这是一本能指导数据分析师和数据挖掘工程师在AIGC时代快速实现能力跃迁的著作,教会他们使用ChatGPT等AIGC工具,大幅提升数据分析与挖掘的能力和效率。 全书围绕Excel、SQL和Python这3大常用的数据分析和挖掘工具展开,从方法和实践2个维度系统讲解了如何使用ChatGPT和Bing Copilot等AIGC工具来辅助提升效率。 全书一共8章,内容可以分为四个部分: 1.AIGC工具使用和Prompt撰写 首先详细介绍了数据分析与挖掘能用到的各种AIGC工具的使用方法和注意事项,然后全面讲解了如何面向数据分析与挖掘场景构建高质量的Prompt,包括大量的方法和最佳实践。 2.AIGC辅助Excel数据分析与挖掘 方法角度,详细阐述了AIGC工具如何辅助Excel数据分析与挖掘,包括数据集生成、数据管理、数据处理、数据分析和数据展示等;实践角度,通过RFM分析、时间序列分析和相关性分析等3个方面的案例讲解了AIGC工具与Excel在不同场景中的结合使用。 3.AIGC辅助SQL数据分析与挖掘 方法角度,详细讲解了AIGC工具如何辅助SQL数据分析与挖掘,包括数据准备、查询、清洗、转换、分析等;实践角度,通过广告渠道评估、归因报表、留存报表等3个方面的案例讲解了AIGC工具与SQL在不同场景中的结合使用。 4.AIGC辅助Python数据分析与挖掘 方法角度,详细讲解了AIGC工具如何辅助Python数据分析与挖掘,包括环境构建、数据探索、数据处理、AutoML等;实践角度,通过广告预测、商品分析和KPI监控等3个方面的案例讲解了AIGC工具与Python在不同场景中的结合使用。 除此之外,本书还全面总结了用AIGC辅助这3种数据分析与挖掘工具时会遇到哪些问题以及有哪些注意事项。
Python大数据架构全栈开发与应用
本书介绍了如何使用 Python 实现企业级的大数据全栈式开发、设计和编程工作,涉及的知识点包括数据架构整体设计、数据源和数据采集、数据同步、消息队列、关系数据库、NoSQL 数据库、批处理、流处理、图计算、人工智能、数据产品开发。 本书既深入浅出地介绍了不同技术组件的基本原理,又通过详细对比介绍了如何根据不同场景选择最佳实践技术方案,并通过代码实操帮助读者快速掌握常用技术的应用过程,最后通过项目案例介绍了如何将所学知识应用于实际业务场景中。
电商流量数据化运营(数据分析与决策技术丛书)
这是一本系统讲解数据如何在营销与运营的全流程中发挥驱动作用和辅助决策价值的著作。是知名数据分析专家宋天龙的厚积薄发之作,得到了行业里多位专家的一致好评和推荐。在内容组织形式上,本书有宏观和微观两条主线:宏观上,内容围绕流量数据化运营的全流程展开,涵盖渠道策略与计划管理、媒体投放与执行管理、渠道投放效果评估与分析、流量运营监控与效果复盘等各个环节。目标是指导企业如何通过数据实现低成本、大批量、高质量的流量引入,这是流量运营的核心目标,也是本书要解决的核心问题。微观上,内容根据流量数据化运营的业务操作过程来组织,以业务场景为切入点,依次按照业务问题、数据支持方案、实用工具实操的思路展开,通过案例介绍具体的实施过程,用数据解决具体业务问题。这本书的重点不是数据分析的原理和方法,也不是数据分析工具的使用,更不是营销等具体业务工作如何开展,相关的知识全部融合到具体的应用场景中,重点是如何让数据在营销与运营的全流程中发挥价值,真正实现业务与数据的互相促进与补充。本书不要求读者有数据分析基础,也不要求有Python基础。80%的数据处理工作通过Excel完成,余下的20%通过Python完成,即便没有Python基础,也能顺利完成全书的实操。所有实操案例均提供源数据和完整代码。
网站数据挖掘与分析:系统方法与商业实践
这是一本写网站数据分析的专业书,有思路,有分析方法,有分析工具讲解和案例剖析。推荐数据分析、网站运营等人士阅读。作者宋天龙是中国新生代的网站数据分析界“大拿”的代表,其对网站数据分析的理解是行业中数一数二的。他把他对网站数据分析的阐释和领会一览无余地吐露在本书中,并分四篇深入浅出地讲述了从企业数据体系建设之初,到网站分析工具的选择与部署,再到实际案例分析,最后收尾于其对网站数据分析的升华与提高,尤其是引人入胜的第15章对网站数据分析的投入与产出的分析,更是充分展示了宋天龙对网站数据分析游刃有余的拿捏。据此,我推荐任何刚入门及所有对网站数据分析感兴趣的朋友来学习和阅读,如果可能,与宋天龙一起切磋和提高。
Python数据处理、分析、可视化与数据化运营
本书的编写主要围绕Python在企业中的数据分析工作实践,着眼于构建完整的数据分析框架、方法和技能的培养和训练。全书共10章,其中第1章和第2章介绍了进行Python数据分析的准备工作和Python基础知识;第3~9章介绍了数据对象的读写、数据清洗和预处理、数据可视化、基本数据统计分析和高级数据建模分析、自然语言理解和文本挖掘、数据分析部署和应用等完整工作技能和方法;第10章介绍了数据分析在数据化运营中的完整应用思路、维度和框架。本书内容深入浅出,均以企业真实需求引导学习,具有很强的实用性和操作性。本书可以作为普通高等院校本科、专科统计、商务分析、大数据等专业的课程教材,也可以作为从事数据分析工作的人员的参考用书。
AIGC辅助数据分析与数据化运营
这是一本能从业务、方法、场景3个维度帮助读者使用AI技术提升数据分析和数据化运营的。用扎实的理论框架、丰富的实践案例、实用的作技巧,全面展示了如何用AI延伸业务分析广度、拓展业务分析深度、化业务分析效能,从而达到帮助企业用智能的数据化运营实现业务持续增长的目的。
网站分析工具的选择应用
暂无简介
从大数据新人到数据架构师必备三本书
对于很多企业而言,大数据的重要性不言而喻,但是如何构建、实施和应用大数据系统却是一个复杂工程。本书让读者认识到大数据不仅仅是数据、技术、架构、应用,更是结合了商业模式、战略定位、信息安全、单位协同、组织保障、实施选型的完整体系。 本书内容从大数据的规划定位、组织实施和价值提升三个维度展开,兼顾从整体性、全局性、安全性、价值性、技术性、体系性等方面的考虑。 第一部分:企业大数据战略规划 主要从宏观的角度介绍大数据的定位、组织保障、解决方案选择和自主实施思路,目的是从全局角度引导建立大数据工作的整体思维。 第二部分:企业大数据落地实施 主要从执行层面介绍了大数据落地相关的技术、架构、开发、大数据工作流、应用和价值评估,直接以落地视角解读大数据工作中每个环节涉及到的流程、知识和方法,这也是本书的核心章节。 第三部分:大数据价值、变革和挑战 主要涉及大数据的社会价值、当前问题和挑战以及大数据的未来趋势,这是对现有大数据工作的延展以及未来趋势的探索。 这是一部系统、深度讲解大数据技术栈的著作,从数据收集、数据存储、资源管理与服务协调、计算引擎、数据分析、数据可视化6个层次讲解了整个大数据技术体系中所有核心技术的原理、架构与实践。不仅能让读者从宏观上全面认识整个大数据系统,而且还能让读者从微观上深入理解各种大数据技术的细节。 本书将以数据在大数据系统中的生命周期为线索,一共17章,分为七个部分: 第一部分(第1章):概述 主要介绍企业级大数据技术框架、技术实现方案和架构,包括Google的大数据技术栈和以Hadoop和Spark为代表的开源技术栈。 第二部分(第2-4章):数据收集 讲解大数据收集相关技术,主要涉及关系型数据收集工具Sqoop与Canel,非关系型数据收集系统Flume以及分布式消息队列Kafka。 第三部分(第5-7章):数据存储 讲解大数据存储相关技术,涉及数据存储格式,分布式文件系统以及分布式数据库三部分,包括Thrift、Protobuf、Avro、HDFS和HBase等。 第四部分(第8-9章):分布式协调与资源管理 讲解资源管理和服务协调相关技术,涉及资源管理和调度系统YARN以及资源协调系统Zookeeper。 第五部分(第10-13章):计算引擎 讲解计算引擎相关技术,涉及批处理、交互式处理以及流式实时处理三类引擎,包括MapReduce、Spark、Impala/Presto、Storm等常用技术。 第六部分(第14-16章):数据分析 讲解数据分析相关技术,涉及基于数据分析语言HQL与SQL,大数据统一编程模型及机器学习库等。 第七部分(第17章):应用案例 讲解了3个企业级大数据综合应用案例,包括Lambda架构、基于大数据技术的数据仓库、用户行为实时统计系统。 这是一部教你如何从0到1架构与实现一个企业级大数据平台的著作,是作者在大数据和系统架构领域工作超过20000小时的经验总结。 作者从横向视角出发,手把手教你如何拉通Hadoop体系技术栈,以此搭建一个真实可用、安全可靠的大数据平台。通过阅读本书,大家一定能找到灵感和思路来应对实际工作中面对的问题。 本书在逻辑上分为三大部分: 背景篇(第1~2章):简单阐述了企业级大数据平台的重要性,并指出了作为一个企业级大数据平台应当具备的能力。接着抛砖引玉介绍了通过Hadoop生态体系去构建一个企业级大数据平台可以使用的技术栈的核心概念,如HDFS、HBase、Spark等。 方法篇(第3~6章):详细讲解了集群服务、安全网关、服务授权、Kerberos认证、单点登录和集群用户整合等各个方面的背景知识与配置整合步骤。 扩展篇(第7~8章):介绍了如何用编写Restful服务的形式进一步扩展平台功能的一些思路,以便提高平台的易用性和可用性。