相关作者的搜索结果
深度学习之TensorFlow:入门、原理与进阶实战
5人今日阅读 推荐值 78.3%
本书针对TensorFlow 1.0以上版本编写,采用“理论+实践”的形式编写,通过大量的实例(共96个),全面而深入地讲解“深度学习神经网络原理”和“Tensorflow使用方法”两方面。书中的实例具有很强的实用,如对图片分类、制作一个简单的聊天机器人、进行图像识别等。书中的每章都配有一段教学视频,视频和图书具有一样的内容和结构,能帮助读者快速而全面地了解本章的内容。本书还免费提供了所有案例的源代码及数据样本,这些代码和样本不仅方便了读者学习,而且也能为以后的工作提供便利。 全书共分为3篇:第1篇“深度学习与TensorFlow基础”,包括快速了解人工智能与TensorFlow、搭建开发环境、TensorFlow基本开发步骤、TensorFlow编程基础、一个识别图中模糊的数字的案例;第2篇“深度学习基础——神经网络”介绍了神经网络的基础模型,包括单个神经元、多层神经网络、卷积神经网络、循环神经网络、自编码网络;第3篇“神经网络进阶”,是对基础网络模型的灵活运用与自由组合,是对前面知识的综合及拔高,包括深度神经网络、对抗神经网络。 本书结构清晰、案例丰富、通俗易懂、实用性强。特别适合TensorFlow深度学习的初学者和进阶读者作为自学教程阅读。另外,本书也适合社会培训学校作为培训教材使用,还适合大中专院校的相关专业作为教学参考书。
Python带我起飞 入门、进阶、商业实战(博文视点出品)
《Python带我起飞——入门、进阶、商业实战》采用“理论+实践”的形式编写,共分为 4 篇: 第1 篇,包括了解Python、配置机器及搭建开发环境、语言规则; 第2 篇,介绍了Python 语言的基础操作,包括变量与操作、控制流、函数操作、错误与异常、文件操作; 第3 篇,介绍了更高级的Python 语法知识及应用,包括面向对象编程、系统调度编程; 第4 篇,是前面知识的综合应用,包括爬虫实战、自动化实战、机器学习实战、人工智能实战。 《Python带我起飞——入门、进阶、商业实战》结构清晰、案例丰富、通俗易懂、实用性强。 特别适合Python 语言的初学和进阶读者,作为自学教程阅读。 也适合社会培训学校作为培训教材使用,还适合大中专院校的相关专业作为教学参考书。
深度学习之TensorFlow工程化项目实战(博文视点出品)
这是一本非常全面的、专注于实战的AI图书,兼容TensorFlow 1.x和2.x版本,共75个实例。 本书结构清晰、案例丰富、通俗易懂、实用性强。适合对人工智能、TensorFlow感兴趣的读者作为自学教程。另外,本书也适合社会培训学校作为培训教材,还适合大中专院校的相关专业作为教学参考书。
机器视觉之TensorFlow 2 入门、原理与应用实战
本书主要介绍了TensorFlow 2在机器视觉中的应用。本书共8章,主要内容包括神经网络的原理,如何搭建开发环境,如何在网络侧搭建图片分类器,如何识别图片中不同肤色的人数,如何用迁移学习诊断医疗影像,如何使用Anchor-Free模型检测文字,如何实现OCR模型,如何优化OCR模型。 本书适合机器视觉、深度学习方面的专业人士阅读。
TensorFlow 2.X项目实战
本书基于TensorFlow 2.1 版本进行编写。书中内容分为4 篇。 第1 篇包括TensorFlow 的安装、使用方法。这部分内容可以使读者快速上手TensorFlow 工具。 第2 篇包括数据集制作、特征工程等数据预处理工作,以及与数值分析相关的模型(其中包括wide_deep 模型、梯度提升树、知识图谱、带有JANET 单元的RNN 等模型)。 第3 篇从自然语言处理、计算机视觉两个应用方向介绍了基础的算法原理和主流的模型。具体包括:TextCNN 模型、带有注意力机制的模型、带有动态路由的RNN 模型、BERTology 系列模型、EfficientNet系列模型、Anchor-Free 模型、YOLO V3 模型等。 第4 篇介绍了生成式模型和零次学习两种技术,其中系统地介绍了信息熵、归一化、f-GAN、**传输、Sinkhorn 算法,以及变分自编码、DeblurGAN、AttGAN、DIM、VSC 等模型。 本书结构清晰、案例丰富、通俗易懂、实用性强,适合对人工智能、TensorFlow 感兴趣的读者作为自学教程。 另外,本书也适合社会培训学校作为培训教材,还适合计算机相关专业作为教学参考书。
基于BERT模型的自然语言处理实战
本书介绍如何在PyTorch框架中使用BERT模型完成自然语言处理(NLP)任务。BERT模型是当今处理自然语言任务效果最好的模型。掌握了该模型,就相当于掌握了当今主流的NLP技术。 本书共3篇。第1篇介绍了神经网络的基础知识、NLP的基础知识,以及编程环境的搭建;第2篇介绍了PyTorch编程基础,以及BERT模型的原理、应用和可解释性;第3篇是BERT模型实战,帮助读者开阔思路、增长见识,使读者能够真正驾驭BERT模型,活学活用,完成自然语言处理任务。 通过本书,读者可以熟练地在PyTorch框架中开发并训练神经网络模型,快速地使用BERT模型完成各种主流的自然语言处理任务,独立地设计并训练出针对特定需求的BERT模型,轻松地将BERT模型封装成Web服务部署到云端。 本书结构清晰、案例丰富、通俗易懂、实用性强,适合对自然语言处理、BERT模型感兴趣的读者作为自学教程。另外,本书也适合社会培训学校作为培训教材,还适合计算机相关专业作为教学参考书。
PyTorch深度学习和图神经网络 卷2 开发应用
本书通过深度学习实例,从可解释性角度出发,阐述深度学习的原理,并将图神经网络与深度学习结合,介绍图神经网络的实现技术。本书分为6章,主要内容包括:图片分类模型、机器视觉的高级应用、自然语言处理的相关应用、神经网络的可解释性、识别未知分类的方法——零次学习、异构图神经网络。本书中的实例是在PyTorch框架上完成的,具有较高的实用价值。本书适合人工智能从业者、程序员进阶学习,也适合作为大专院校相关专业师生的教学和学习用书,以及培训学校的教材。
PyTorch深度学习和图神经网络 卷1 基础知识
本书从基础知识开始,介绍深度学习与图神经网络相关的一系列技术与实现方法,主要内容包括PyTorch的使用、神经网络的原理、神经网络的基础模型、图神经网络的基础模型。书中侧重讲述与深度学习基础相关的网络模型和算法思想,以及图神经网络的原理,且针对这些知识点给出在PyTorch框架上的实现代码。本书适合想学习图神经网络的技术人员、人工智能从业人员阅读,也适合作为大专院校相关专业的师生用书和培训班的教材。