出现在书名中的结果
共 0 条
深入浅出Pandas:利用Python进行数据处理与分析
74人今日阅读 推荐值 86.6%
如果你想充分发挥Python的强大作用,如果你想成为一名好的Python工程师,你应该先学好Pandas。这是一本全面覆盖了Pandas使用者的普遍需求和痛点的著作,基于实用、易学的原则,从功能、使用、原理等多个维度对Pandas做了全方位的详细讲解,既是初学者系统学习Pandas难得的入门书,又是有经验的Python工程师案头必不可少的查询手册。本书共17章,分为七部分。1部分(1~2章) Pandas入门:首先介绍了Pandas的功能、使用场景和学习方法,然后详细讲解了Python开发环境的搭建,Z后介绍了Pandas的大量基础功能,旨在引领读者快速入门。二部分(3~5章) Pandas数据分析基础:详细讲解了Pandas读取与输出数据、索引作、数据类型转换、查询筛选、统计计算、排序、位移、数据修改、数据迭代、函数应用等内容。三部分(6~9章) 数据形式变化:讲解了Pandas的分组聚合作、合并作、对比作、数据透视、转置、归一化、标准化等,以及如何利用多层索引对数据进行升降维。部分(10~12章) 数据清洗:讲解了缺失值和重复值的识别、删除、填充,数据的替换、格式转换,文本的提取、连接、匹配、切分、替换、格式化、虚拟变量化等,以及分类数据的应用场景和作方法。五部分(13~14章)时序数据分析:讲解了Pandas中对于各种时间类型数据的处理和分析,以及在时序数据处理中经常使用的窗口计算。六部分(15~16章) 可视化:讲解了Pandas的样式功能如何让数据表格更有表现力,以及Pandas的绘图功能如何让数据自己说话。七部分(17章) 实战案例:介绍了从需求到代码的思考过程,如何利用链式编程思想提高代码编写和数据分析效率,以及数据分析的基本方法与需要掌握的数据分析工具和技术栈,此外还从数据处理和数据分析两个角度给出了大量的应用案例及代码详解。
Excel+Python:飞速搞定数据分析与处理
27人今日阅读 推荐值 68.8%
在如今的时代,大型数据集唾手可得,含有数百万行的数据文件并不罕见。Python是数据分析师和数据科学家的首选语言。通过本书,即使完全不了解Python,Excel用户也能够学会用Python将烦琐的任务自动化,显著地提高办公效率,并利用Python在数据分析和科学计算方面的突出优势,轻松搞定Excel任务。你将学习如何用pandas替代Excel函数,以及如何用自动化Python库替代VBA宏和用户定义函数等。本书既适合Excel用户,也适合Python用户阅读。
PyTorch计算机视觉实战:目标检测、图像处理与深度学习
14人今日阅读
本书基于真实数据集,全面系统地阐述现代计算机视觉实用技术、方法和实践,涵盖50多个计算机视觉问题。全书分为四部分:di一部分(第1~3章)介绍神经网络和PyTorch的基础知识,以及如何使用PyTorch构建并训练神经网络,包括输入数据缩放、批归一化、超参数调整等;第二部分(第4~10章)介绍如何使用卷积神经网络、迁移学习等技术解决更复杂的视觉相关问题,包括图像分类、目标检测和图像分割等;第三部分(第11~13章)介绍各种图像处理技术,包括自编码器模型和各种类型的GAN模型;第四部分(第14~18章)探讨将计算机视觉技术与NLP、强化学习和OpenCV等技术相结合来解决传统问题的新方法。本书内容丰富新颖,语言文字表述清晰,应用实例讲解详细,图例直观形象,适合PyTorch初中级读者及计算机视觉相关技术人员阅读。
数据科学工程实践:用户行为分析与建模、A/B实验、SQLFlow
9人今日阅读
内容简介 这是一本将数据科学三要素——商业理解、量化模型、数据技术全面打通的实战性著作,是来自腾讯、滴滴、快手等一线互联网企业的数据科学家、数据分析师和算法工程师的经验总结,得到了SQLFlow创始人以及腾讯、网易、快手、贝壳找房、谷歌等企业的专家一致好评和推荐。 全书三个部分,内容相对独立,既能帮助初学者建立知识体系,又能帮助从业者解决商业中的实际问题,还能帮助有经验的专家快速掌握数据科学的Z新技术和发展动向。内容围绕非实验环境下的观测数据的分析、实验的设计和分析、自助式数据科学平台3大主题展开,涉及统计学、经济学、机器学习、实验科学等多个领域,包含大量常用的数据科学方法、简洁的代码实现和经典的实战案例。 第1部分(第 1~6 章) 观测数据的分析技术 讲解了非实验环境下不同观测数据分析场景所对应的分析框架、原理及实际操作,包括消费者选择偏好分析、消费者在时间维度上的行为分析、基于机器学习的用户生命周期价值预测、基于可解释模型技术的商业场景挖掘、基于矩阵分解技术的用户行为规律发现与挖掘,以及在不能进行实验分析时如何更科学地进行全量评估等内容。 第二部分(第7~9章)实验设计和分析技术 从 A/B 实验的基本原理出发,深入浅出地介绍了各种商业场景下进行实验设计需要参考的原则和运用的方法,尤其是在有样本量约束条件下提升实验效能的方法及商业场景限制导致的非传统实验设计。 第三部分(第10~12章) 自助式数据科学平台SQLFlow 针对性的讲解了开源的工程化的自助式数据科学平台SQLFlow,并通过系统配置、黑盒模型的解读器应用、聚类分析场景等案例帮助读者快速了解这一面向未来的数据科学技术。