出现在书名中的结果
共 0 条

大模型RAG实战:RAG原理、应用与系统构建
50人今日阅读 推荐值 72.5%
内容简介 这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化。无论你是深度学习初学者,还是希望提升RAG应用技能的开发者,本书都将为你提供宝贵的参考与指导。 通过阅读本书,你将掌握以下知识: ?透彻理解RAG的召回和生成模块算法 ?高级RAG系统的技巧 ?RAG系统的各种训练方式方法 ?深入了解RAG的范式变迁 ?实战0基础搭建RAG系统 ?实战高级RAG系统微调与流程搭建

一本书读懂大模型:技术创新、商业应用与产业变革
26人今日阅读 推荐值 73.1%
内容简介 这是一本人人都能读懂的大模型综合指南,既是一本大模型的科普书,又是一本大模型的商业书。由中国电信研究院天翼智库官方出版,从核心技术、基础设施、商业应用、产业体系、安全治理5个维度全面讲解了大模型。语言上通俗易懂,内容上深入浅出,呈现上图文并茂,给读者良好阅读体验的同时,让读者对大模型的理解事半功倍! 无论你是AI工程师,还是完全没有IT技术背景的爱好者;无论你是一线的从业人员,还是企业的管理者和决策者,你都能通过本书系统理解和掌握大模型,从而深刻认识大模型的核心价值和应用潜力,把握住大模型带来的变革和商机。 通过阅读本书,我们每个人都能从中收获以下知识: (1)AI的本质和AI发展的4个阶段; (2)大模型的核心技术和大模型的技术进化路线; (3)大模型的算力基础设施和数据基础设施; (4)基座模型的智能涌现和3大应用模式; (5)大模型对互联网行业的影响以及带来的机会; (6)大模型的应用全景,以及医疗、媒体、金融、政务、工业等领域的大模型解决方案; (7)大模型的产业图谱和商业模式,以及大模型产业的发展趋势; (8)大模型带来的风险及其治理思路; (9)大模型未来在经济发展、社会治理、科技创新、AI治理等方面能发挥的作用和价值。 希望这本书能实现人工智能和大模型普惠,帮助我们每个人、每一家企业把握住大模型的时代机遇,成为时代的引领者和弄潮儿。

大语言模型:原理、应用与优化
12人今日阅读 推荐值 79.9%
这是一本从工程化角度讲解大语言模型的核心技术、构建方法与前沿应用的著作。首先从语言模型的原理和大模型的基础构件入手,详细梳理了大模型技术的发展脉络,深入探讨了大模型预训练与对齐的方法;然后阐明了大模型训练中的算法设计、数据处理和分布式训练的核心原理,展示了这一系统性工程的复杂性与实现路径。 除了基座模型的训练方案,本书还涵盖了大模型在各领域的落地应用方法,包括低参数量微调、知识融合、工具使用和自主智能体等,展示了大模型在提高生产力和创造性任务中的卓越性能和创新潜力。此外,书中进一步介绍了大模型优化的高级话题和前沿技术,如模型小型化、推理能力和多模态大模型等。最后,本书讨论了大模型的局限性与安全性问题,展望了未来的发展方向,为读者提供了全面的理解与前瞻性的视角。 无论是人工智能领域的研究员、工程师,还是对前沿技术充满好奇的读者,本书都将是您了解和掌握大模型技术的必备指南。

AI Agent开发与应用:基于大模型的智能体构建
8人今日阅读
"《AI Agent开发与应用:基于大模型的智能体构建》详尽地阐述智能体的基础理论、开发工具以及不同层次的开发方法,通过融合自然语言理解、多轮对话和任务自动化技术,为读者提供从理论到实践的全方位指导,旨在帮助读者构建高效的智能体。《AI Agent开发与应用:基于大模型的智能体构建》分为3个部分,共12章。第1部分(第1~5章)深入解析智能体的工作原理及开发所需的工具链,包括智能体的定义、类型及其与大语言模型(LLM)的关系,探讨智能体框架结构和核心模块的设计,并介绍LangChain和LlamaIndex等技术如何助力任务自动化和数据管理,使读者能够亲身体验智能体的基础开发过程。第2部分 (第6、7章)聚焦于智能体的浅度开发,通过订票系统和智能翻译智能体等实例,展示如何将理论知识应用于实际项目。第3部分(第8~12章)深入探索智能体的高级开发技巧。其中,第8~10章通过邮件处理、面试助手、个性化推送等案例,展现智能体在实际应用中的强大功能;第11、12章则基于这些应用进行拓展,结合多种部署方案,进一步拓宽读者的视野,使其能够全面掌握智能体的多样化应用场景。 《AI Agent开发与应用:基于大模型的智能体构建》不仅适合智能体开发人员、人工智能从业者和AI技术爱好者阅读,还可作为培训机构和高校相关课程的教材或参考书。"

ClickHouse原理解析与应用实践
7人今日阅读 推荐值 69.7%
本书是一本系统介绍Clickhouse的指导型工具书,全书总共分为11章: 第1章 介绍ClickHouse的由来、发展历程、核心特点与核心特点。第2~6章 介绍了ClickHouse基础使用部分,包括整体架构、如何安装、数据定义、数据引擎、数据查询和函数的特性和使用方法。第7~9章介绍了ClickHouse高级特性部分,包括数据库管理操作,数据分片、数据副本和高可用的特性和使用方法。第10~11章介绍了如果自己手动实现ClickHouse中间件的思路和示例,同时也介绍了几款可视化工具与ClickHouse集成的方法。

多模态大模型:算法、应用与微调
7人今日阅读
本书详尽地覆盖了多模态大模型的算法原理和应用实战,提供了丰富的微调技术细节和实际案例,适合对多模态大模型有兴趣的技术人员深入学习及应用。 本书分为两篇: 算法原理篇 详细介绍了先进的深度学习模型,包括Transformer、GPT系列、深度生成模型,从基本架构、训练方法到特定应用,包括但不限于Seq2Seq结构、位置编码、注意力机制、残差连接、变分自编码器、GAN、ViT、CLIP、Stable Diffusion、各模型训练实践的知识点。此外,探讨了预训练模型的涌现能力、模型参数和通信数据量的估算,以及分布式训练的各种技术,如数据并行、模型并行和混合精度训练等。 应用实战篇 聚焦于深度学习模型的实际应用,特别是文本和图像生成,以及代码生成的应用实战。通过具体实战项目,如利用Stable Diffusion进行图像生成和Code Llama进行代码生成,提供了微调技术的详细细节,介绍了LangChain等大模型应用框架。

向量数据库:大模型驱动的智能检索与应用
7人今日阅读
"《向量数据库:大模型驱动的智能检索与应用》系统地介绍向量数据库的原理、技术实现及其应用,重点分析传统数据库在处理高维向量数据时的局限性,并提供相应的解决方案。《向量数据库:大模型驱动的智能检索与应用》分为4个部分,共13章,内容涵盖从理论基础到技术实践的多个方面,详细讨论高维向量表示中的信息丢失、嵌入空间误差和维度诅咒等问题,结合FAISS和Milvus等主流开源工具,深入剖析向量数据库的索引机制、搜索算法和优化策略。通过实际案例,展示向量数据库在推荐系统、行为分析、智能诊断、语义搜索等领域的应用,并特别强调企业级语义搜索系统的开发与部署经验。 《向量数据库:大模型驱动的智能检索与应用》不仅提供深度的理论指导,还通过丰富的案例帮助读者掌握如何构建高效的向量搜索引擎,适合从事搜索引擎与推荐系统开发的工程师,数据科学、人工智能及相关领域的从业者、研究人员,以及对向量数据库与相似性搜索感兴趣的读者,也可作为培训机构和高校相关课程的教学用书。"

动手学PyTorch建模与应用:从深度学习到大模型
6人今日阅读
《动手学PyTorch建模与应用:从深度学习到大模型》是一本从零基础上手深度学习和大模型的PyTorch实战指南。《动手学PyTorch建模与应用:从深度学习到大模型》共11章,第1章主要介绍深度学习的概念、应用场景及开发环境搭建。第2章详细介绍PyTorch数学基础,包括函数、微分、数理统计、矩阵等基础知识及其案例。第3章介绍数据预处理及常用工具,包括NumPy、Pandas、Matplotlib、数据清洗、特征工程以及深度学习解决问题的一般步骤等。第4章介绍PyTorch基础知识,包括张量的创建、激活函数、损失函数、优化器等。第5章介绍PyTorch深度神经网络,包括神经网络概述、卷积神经网络、循环神经网络等。第6章介绍PyTorch数据建模,包括回归分析、聚类分析、主成分分析、模型评估与调优等。第7~10章介绍PyTorch图像建模、文本建模、音频建模和模型可视化。第11章介绍大语言模型的原理、主要的大语言模型及模型本地化部署、预训练与微调技术。本书还精心设计了50个动手案例和上机练习题,并对所有代码进行了详尽注释和说明,同时提供数据集和配书资源文件,以帮助读者更好地使用本书。 《动手学PyTorch建模与应用:从深度学习到大模型》讲解深入浅出,注重动手实操,特别适合想学习AI技术或想进入该领域的初学者,对深度学习感兴趣的新手、在校学生和从业者阅读,也很适合作为培训机构和高校相关专业的教学用书。

知识图谱:方法、实践与应用
5人今日阅读 推荐值 64.6%
知识图谱是较为典型的多学科交叉领域,涉及知识工程、自然语言处理、机器学习、图数据库等多个领域。本书系统地介绍知识图谱涉及的关键技术,如知识建模、关系抽取、图存储、自动推理、图谱表示学习、语义搜索、知识问答、图挖掘分析等。此外,本书还尝试将学术前沿和实战结合,让读者在掌握实际应用能力的同时对前沿技术发展有所了解。 本书既适合计算机和人工智能相关的研究人员阅读,又适合在企业一线从事技术和应用开发的人员学习,还可作为高等院校计算机或人工智能专业师生的参考教材。