出现在书名中的结果
共 0 条

Python数据分析实战——从Excel轻松入门Pandas
15人今日阅读 推荐值 77.5%
本书从零开始系统讲解了使用Pandas导入Excel数据,然后使用Pandas技术对数据做整理和分析,最后导出为不同形式的Excel文件。完整实现了数据的导入、处理、输出的处理流程。全书共10章。第1章为Pandas数据处理环境的搭建,第2章为使用Pandas对Excel数据读取与保存,第3章介绍与Pandas底层数据相关的NumPy库,第4章介绍了Pandas中DataFrame表格的增、删、改、查等常用操作,第5章介绍了对Series与DataFrame两种数据的运算、分支、遍历等处理,第6章介绍了字符串的各种清洗技术,第7章介绍时间戳与时间差数据的处理,第8章介绍Pandas中分层索引及与索引相关的操作,第9章介绍了对数据的分组处理及做数据透视表处理,第10章介绍了表格的数据结构转换,以及多表读取与保存。书中包含相应示例,不仅可以学会理论知识还可以灵活应用。

Python金融大数据分析(第2版)
14人今日阅读 推荐值 75.7%
《Python金融大数据分析 第2版》分为5部分,共21章。第1部分介绍了Python在金融学中的应用,其内容涵盖了Python用于金融行业的原因、Python的基础架构和工具,以及Python在计量金融学中的一些具体入门实例;第2部分介绍了Python的基础知识以及Python中非常有名的库NumPy和pandas工具集,还介绍了面向对象编程;第3部分介绍金融数据科学的相关基本技术和方法,包括数据可视化、输入/输出操作和数学中与金融相关的知识等;第4部分介绍Python在算法交易上的应用,重点介绍常见算法,包括机器学习、深度神经网络等人工智能相关算法;第5部分讲解基于蒙特卡洛模拟开发期权及衍生品定价的应用,其内容涵盖了估值框架的介绍、金融模型的模拟、衍生品的估值、投资组合的估值等知识。 《Python金融大数据分析 第2版》本书适合对使用Python进行大数据分析、处理感兴趣的金融行业开发人员阅读。