出现在书名中的结果
共 0 条

大模型应用开发 动手做AI Agent
92人今日阅读 推荐值 71.5%
人工智能时代一种全新的技术——Agent正在崛起。这是一种能够理解自然语言并生成对应回复以及执行具体行动的人工智能体。它不仅是内容生成工具,而且是连接复杂任务的关键纽带。本书将探索Agent的奥秘,内容包括从技术框架到开发工具,从实操项目到前沿进展,通过带着读者动手做7个功能强大的Agent,全方位解析Agent的设计与实现。本书最后展望了Agent的发展前景和未来趋势。 本书适合对Agent技术感兴趣或致力于该领域的研究人员、开发人员、产品经理、企业负责人,以及高等院校相关专业师生等阅读。读者将跟随咖哥和小雪的脚步,踏上饶有趣味的Agent开发之旅,零距离接触GPT-4模型、OpenAI Assistants API、LangChain、LlamaIndex和MetaGPT等尖端技术,见证Agent在办公自动化、智能调度、知识整合以及检索增强生成(RAG)等领域的非凡表现,携手开启人工智能时代的无限可能,在人机协作的星空中共同探寻那颗最闪亮的Agent之星!

模型思维:数学模型解构大模型黑箱
85人今日阅读
推荐值 70.9%
结合 24 个经典数学模型(如线性回归、决策树),解析大模型训练数据的逻辑漏洞。通过可视化模型决策路径,帮助读者理解 GPT-4 等模型的预测机制,识别数据偏差与过拟合问题。本书提供的结构化分析框架,可指导用户设计直指模型本质的追问,提升人机协作效率。

大模型RAG实战:RAG原理、应用与系统构建
58人今日阅读 推荐值 72.5%
内容简介 这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化。无论你是深度学习初学者,还是希望提升RAG应用技能的开发者,本书都将为你提供宝贵的参考与指导。 通过阅读本书,你将掌握以下知识: ?透彻理解RAG的召回和生成模块算法 ?高级RAG系统的技巧 ?RAG系统的各种训练方式方法 ?深入了解RAG的范式变迁 ?实战0基础搭建RAG系统 ?实战高级RAG系统微调与流程搭建

一本书读懂大模型:技术创新、商业应用与产业变革
27人今日阅读 推荐值 73.1%
内容简介 这是一本人人都能读懂的大模型综合指南,既是一本大模型的科普书,又是一本大模型的商业书。由中国电信研究院天翼智库官方出版,从核心技术、基础设施、商业应用、产业体系、安全治理5个维度全面讲解了大模型。语言上通俗易懂,内容上深入浅出,呈现上图文并茂,给读者良好阅读体验的同时,让读者对大模型的理解事半功倍! 无论你是AI工程师,还是完全没有IT技术背景的爱好者;无论你是一线的从业人员,还是企业的管理者和决策者,你都能通过本书系统理解和掌握大模型,从而深刻认识大模型的核心价值和应用潜力,把握住大模型带来的变革和商机。 通过阅读本书,我们每个人都能从中收获以下知识: (1)AI的本质和AI发展的4个阶段; (2)大模型的核心技术和大模型的技术进化路线; (3)大模型的算力基础设施和数据基础设施; (4)基座模型的智能涌现和3大应用模式; (5)大模型对互联网行业的影响以及带来的机会; (6)大模型的应用全景,以及医疗、媒体、金融、政务、工业等领域的大模型解决方案; (7)大模型的产业图谱和商业模式,以及大模型产业的发展趋势; (8)大模型带来的风险及其治理思路; (9)大模型未来在经济发展、社会治理、科技创新、AI治理等方面能发挥的作用和价值。 希望这本书能实现人工智能和大模型普惠,帮助我们每个人、每一家企业把握住大模型的时代机遇,成为时代的引领者和弄潮儿。

大模型应用开发极简入门:基于GPT-4和ChatGPT
24人今日阅读 推荐值 71.2%
本书为大模型应用开发极简入门手册,为初学者提供了一份清晰、全面的“可用知识”,带领大家快速了解GPT-4和ChatGPT的工作原理及优势,并在此基础上使用流行的Python编程语言构建大模型应用。通过本书,你不仅可以学会如何构建文本生成、问答和内容摘要等初阶大模型应用,还能了解到提示工程、模型微调、插件、LangChain等高阶实践技术。书中提供了简单易学的示例,帮你理解并应用在自己的项目中。此外,书后还提供了一份术语表,方便你随时参考。 准备好了吗?只需了解Python,你即可将本书作为进入大模型时代的启动手册,开发出自己的大模型应用。

多模态大模型:算法、应用与微调
19人今日阅读
本书详尽地覆盖了多模态大模型的算法原理和应用实战,提供了丰富的微调技术细节和实际案例,适合对多模态大模型有兴趣的技术人员深入学习及应用。 本书分为两篇: 算法原理篇 详细介绍了先进的深度学习模型,包括Transformer、GPT系列、深度生成模型,从基本架构、训练方法到特定应用,包括但不限于Seq2Seq结构、位置编码、注意力机制、残差连接、变分自编码器、GAN、ViT、CLIP、Stable Diffusion、各模型训练实践的知识点。此外,探讨了预训练模型的涌现能力、模型参数和通信数据量的估算,以及分布式训练的各种技术,如数据并行、模型并行和混合精度训练等。 应用实战篇 聚焦于深度学习模型的实际应用,特别是文本和图像生成,以及代码生成的应用实战。通过具体实战项目,如利用Stable Diffusion进行图像生成和Code Llama进行代码生成,提供了微调技术的详细细节,介绍了LangChain等大模型应用框架。

AI Agent开发与应用:基于大模型的智能体构建
19人今日阅读
"《AI Agent开发与应用:基于大模型的智能体构建》详尽地阐述智能体的基础理论、开发工具以及不同层次的开发方法,通过融合自然语言理解、多轮对话和任务自动化技术,为读者提供从理论到实践的全方位指导,旨在帮助读者构建高效的智能体。《AI Agent开发与应用:基于大模型的智能体构建》分为3个部分,共12章。第1部分(第1~5章)深入解析智能体的工作原理及开发所需的工具链,包括智能体的定义、类型及其与大语言模型(LLM)的关系,探讨智能体框架结构和核心模块的设计,并介绍LangChain和LlamaIndex等技术如何助力任务自动化和数据管理,使读者能够亲身体验智能体的基础开发过程。第2部分 (第6、7章)聚焦于智能体的浅度开发,通过订票系统和智能翻译智能体等实例,展示如何将理论知识应用于实际项目。第3部分(第8~12章)深入探索智能体的高级开发技巧。其中,第8~10章通过邮件处理、面试助手、个性化推送等案例,展现智能体在实际应用中的强大功能;第11、12章则基于这些应用进行拓展,结合多种部署方案,进一步拓宽读者的视野,使其能够全面掌握智能体的多样化应用场景。 《AI Agent开发与应用:基于大模型的智能体构建》不仅适合智能体开发人员、人工智能从业者和AI技术爱好者阅读,还可作为培训机构和高校相关课程的教材或参考书。"

大模型应用开发极简入门:基于GPT-4和ChatGPT(第2版)
17人今日阅读
本书为广受读者喜爱的畅销书升级版,旨在让读者快速、简单地上手大模型应用开发。 本书为初学者提供了一份清晰、全面的“最小可用知识”,带领你快速了解 GPT-4 和 ChatGPT 的工作原理及优势,并在此基础上使用流行的 Python 编程语言构建大模型应用。升级版在旧版的基础上进行了全面更新,融入了大模型应用开发的最新进展,比如 RAG、GPT-4 新特性的应用解析等。本书提供了大量简单易学的示例,帮你理解相关概念并将其应用在自己的项目中。 准备好了吗?只需了解 Python,你即可将本书作为进入大模型时代的启动手册,开发出自己的大模型应用。

大语言模型:原理、应用与优化
13人今日阅读 推荐值 79.9%
这是一本从工程化角度讲解大语言模型的核心技术、构建方法与前沿应用的著作。首先从语言模型的原理和大模型的基础构件入手,详细梳理了大模型技术的发展脉络,深入探讨了大模型预训练与对齐的方法;然后阐明了大模型训练中的算法设计、数据处理和分布式训练的核心原理,展示了这一系统性工程的复杂性与实现路径。 除了基座模型的训练方案,本书还涵盖了大模型在各领域的落地应用方法,包括低参数量微调、知识融合、工具使用和自主智能体等,展示了大模型在提高生产力和创造性任务中的卓越性能和创新潜力。此外,书中进一步介绍了大模型优化的高级话题和前沿技术,如模型小型化、推理能力和多模态大模型等。最后,本书讨论了大模型的局限性与安全性问题,展望了未来的发展方向,为读者提供了全面的理解与前瞻性的视角。 无论是人工智能领域的研究员、工程师,还是对前沿技术充满好奇的读者,本书都将是您了解和掌握大模型技术的必备指南。

动手学PyTorch建模与应用:从深度学习到大模型
12人今日阅读
《动手学PyTorch建模与应用:从深度学习到大模型》是一本从零基础上手深度学习和大模型的PyTorch实战指南。《动手学PyTorch建模与应用:从深度学习到大模型》共11章,第1章主要介绍深度学习的概念、应用场景及开发环境搭建。第2章详细介绍PyTorch数学基础,包括函数、微分、数理统计、矩阵等基础知识及其案例。第3章介绍数据预处理及常用工具,包括NumPy、Pandas、Matplotlib、数据清洗、特征工程以及深度学习解决问题的一般步骤等。第4章介绍PyTorch基础知识,包括张量的创建、激活函数、损失函数、优化器等。第5章介绍PyTorch深度神经网络,包括神经网络概述、卷积神经网络、循环神经网络等。第6章介绍PyTorch数据建模,包括回归分析、聚类分析、主成分分析、模型评估与调优等。第7~10章介绍PyTorch图像建模、文本建模、音频建模和模型可视化。第11章介绍大语言模型的原理、主要的大语言模型及模型本地化部署、预训练与微调技术。本书还精心设计了50个动手案例和上机练习题,并对所有代码进行了详尽注释和说明,同时提供数据集和配书资源文件,以帮助读者更好地使用本书。 《动手学PyTorch建模与应用:从深度学习到大模型》讲解深入浅出,注重动手实操,特别适合想学习AI技术或想进入该领域的初学者,对深度学习感兴趣的新手、在校学生和从业者阅读,也很适合作为培训机构和高校相关专业的教学用书。